Louise Prakash, Ph.D.

Affiliations: Department of Biochemistry & Molecular Biology, Sealy Center for Environmental Health and Medicine and, Associate Member, Sealy Center for Structural Biology and Molecular Biophysics
Tel: (409) 747-8601
Fax: (409) 747-8610
l.prakash@utmb.edu
Route: 1061
6.104 MRB

 

 

Louise Prakash, Ph.D.

Publication List

  • Yoon J-H, Acharya N, Park J, Basu D, Prakash S, Prakash L. Identification of two functional PCNA-binding domains in human DNA polymerase κ. Genes to Cell  2014: 7:594-601.

  • Yoon J-H, Roy Choudhury J, Park J, Prakash S, Prakash L. A role for DNA polymerase q in promoting replication through oxidative DNA lesion, thymine glycol, in human cells. J. Biol. Chem. 2014:289:13177-13185.

  • Jain R, Vanamee, ES, Dzikovski BG, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK. An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ε. J. Mol. Biol. 2014:426:301-308.

  • Jain R, Rajashankar KR, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK.  Crystal structure of yeast DNA polymerase θ catalytic domain.  PloS One 2014:9:e94835.

  • Ummat  A, Silverstein TD, Jain R, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK.  Human DNA polymerase η is pre-aligned for dNTP binding and catalysis.  J. Mol. Biol.2012: 415(5):627-634.

  • Ummat A, Rechkoblit O, Jain R, Roy Choudhury J, Johnson RE, Silverstein TD, Buku A, Lone S, Prakash L, Prakash S, Aggarwal AK. Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nature Struct. Mol. Biol. 2012:19(6):628-632.

  • Yoon J-H, Prakash S, Prakash L. Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells. Proc. Natl. Acad. Sci. 2012:109(20):7799-7804.

  • Johnson RE, Prakash L, Prakash S. Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. Proc. Natl. Acad. Sci. 2012:109(31):12455-12460.

  • Yoon J-H, Prakash S, Prakash L. Genetic control of translesion synthesis on leading and lagging DNA strands in plasmids derived from Epstein-Barr virus in human cells. mBio. 2012: 3(5):e00271-12.

  • Gómez-Llorente Y, Malik R, Jain R, Roy Choudhury J, Johnson RE, Prakash L, Prakash S, Ibarretxena-Belandia I, Aggarwal AK.The architecture of yeast DNA polymerase ζ.Cell Reports 2013:5:79-86.

  • Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S. PCNA binding domains in all three subunits of yeast DNA polymerase d modulate its function in DNA replication. Proc. Natl. Acad. Sci. 2011:108(44):17927-17932.

  • Gangavarapu V.; Santa Maria S. R.; Prakash S.; Prakash L. Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast. mBio 2:1-9; 2011.
  • Vasquez-Del Carpio R.; Silverstein T.D.; Lone S.; Johnson R.E.;, Prakash L.; Prakash S.; Aggarwal A. K. Role of human DNA polymerase k in extension opposite from a cis-syn thymine dimer. J. Mol. Biol.  408(2);252-261; 2011.
  • Ai Y.; Wang J.; Johnson R.E.; Haracska L.; Prakash L.; Zhuang Z. A novel ubiquitin binding mode in the S. cerevisiae translesion synthesis DNA polymerase η. Molecular Biosystems 7(6):1874-1882; 2011.
  • Nair D.T.; Johnson R.E.; Prakash L.; Prakash S.; Aggarwal A.K.  DNA synthesis across an abasic lesion by yeast Rev1 DNA polymerase. J. Mol. Biol. 406(1);18-28; 2011.
  • Silverstein, T. D.; Jain, R., Johnson; R. E., Prakash; L., Prakash, S.; Aggarwal, A. K. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase h.  Structure 18:1463-1470; 2010.
  • Yoon, J.-H.; Bhatia, G.; Prakash, S.; Prakash, L. Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases κ and ζ in human cells. Proc. Natl. Acad. Sci. 107:14116-14121; 2010.
  • Silverstein, T. D.; Johnson, R. E.; Jain, R.; Prakash, L.; Prakash, S.; Aggarwal. A. K. Structural basis for the suppression of skin cancers by DNA polymerase η. Nature 465: 1039-1043; 2010.
  • Acharya, N.;  Yoon, J-H.; Hurwitz, J. Prakash, L.; Prakash, S. DNA polymerase h lacking the ubiquitin-binding domain promotes replicative lesion bypass in human cells.  Proc. Natl. Acad. Sci. 107:10401-10405; 2010.
  • Yoon, J.-H.; Prakash, L.; Prakash, S. Error-free replicative bypass of (6-4) photoproducts by DNA polymerase ζ in mouse and human cells. Genes & Dev. 24:123-128; 2010.
  • Jain, R.; Hammel, M.;  Johnson, R. E.;  Prakash, L.; Prakash, S.;  Aggarwal, A. K.  Structural insights into yeast DNA polymerase δ by small angle X-ray scattering.  J. Mol. Biol. 394:377-382; 2009.
  • Yoon, J.-H.; Prakash, L.; Prakash, S. Highly error-free role of DNA polymerase h in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proc. Natl. Acad. Sci. USA 106:18219-18224; 2009.
  • Jain, R.; Nair, D.T.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K.  Replication across template T/U by human DNA polymerase-i. Structure: 17: 974-980; 2009.
  • Swan, M.K.; Johnson, R. E.; Prakash, L.;  Prakash, S.;  Aggarwal, A. K.  Structure of the human Rev1-DNA-dNTP ternary complex.   J. Mol. Biol. 390: 699-709; 2009.
  • Vasquez-Del Carpio, R.; Silverstein, T. D.;  Lone, S. ; Swan, M. K.; Choudhury, J. R.;  Johnson, R.E.;  Prakash, S.; Prakash, L.; Aggarwal, A. K.  Structure of human DNA polymerase k inserting dATP opposite an 8-oxoG DNA lesion.  PlosONE 4 (e5766)1-9; 2009.
  • Acharya, N.; Johnson, R. E.;  Pagès, V.;  Prakash, L. ; Prakash, S.  Yeast Rev1 protein promotes complex formation of DNA polymerase z with Pol32 subunit of DNA polymerase d. Proc. Natl. Acad. Sci. 106: 9631-9636; 2009.
  • Nair, D. T.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K.  DNA synthesis across an abasic lesion by DNA polymerase-i.  Structure 17: 530-537; 2009.
  • Acharya, N.; Yoon, J.-H.; Gali, H.; Unk, I.; Haracska, L.; Johnson, R.E.; Hurwitz, J.; Prakash, L.; Prakash, S.  Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase h in translesion DNA synthesis.  PNAS 105: 17724-17729; 2008.
  • Pagès, V.; Bresson, A.; Acharya, N.; Prakash, S.; Fuchs, R. P.; Prakash, L.   Requirement of Rad5 for DNA polymerase z-dependent translesion synthesis in Saccharomyces cerevisiae.  Genetics 180: 73-82; 2008.
  • Zhuang, Z.; Johnson, R. E.; Haracska, L.; Prakash, L.; Prakash, S.; Benkovic, S.  Regulation of polymerase exchange between Polh and Pold by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme.  Proc. Natl. Acad. Sci.  105: 5361-5366; 2008.
  • Unk, I.; Hajdú, I.; Fátyol, K.; Hurwitz, J.; Yoon, J.-H.; Prakash, L.; Prakash, S.; Haracska, L.  Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination.  Proc. Natl. Acad. Sci. 105: 3768-3773; 2008.
  • Nair, D. T.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K.  Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase.  Structure  16: 239-245; 2008.
  • Pagès, V.; Johnson, R. E.; Prakash, L.; Prakash, S. Mutational specificity and genetic control of replicative bypass of an abasic site in yeast.  Proc. Natl. Acad. Sci. 105: 1170-1175; 2008.
  • Santa Maria, S. R.; Gangavarapu, V.; Johnson, R.E.; Prakash, L.; Prakash, S. Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.  Mol. Cell. Biol. 27: 8409-8418; 2007.
  • Acharya, N.; Haracska, L.; Prakash, S.; Prakash, L. Complex formation of yeast Rev1 with DNA polymerase h. Mol. Cell. Biol. 27: 8401-8408; 2007.
  • Blastyák, A.; Pintér, L; Unk, I.; Prakash, L.; Prakash, S.; Haracska, L. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28: 167-175; 2007.
  • Gangavarapu, V.; Prakash, S.; Prakash, L. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.  Mol. Cell. Biol. 27: 7758-7764; 2007.
  • Acharya, N.; Brahma, A.; Haracska, L.; Prakash, L.; Prakash, S. Mutations in the ubiquitin binding UBZ motif of DNA polymerase h do not impair its function in translesion synthesis during replication.  Mol. Cell. Biol. 27: 7266-7272; 2007.
  • Johnson, R. E.; Yu, S.-L.; Prakash, S.;  Prakash, L. A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Mol. Cell. Biol. 27: 7198-7205; 2007.
  • Ribar, B.; Prakash, L.; Prakash, S. ELA1 and  CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells.  Mol. Cell Biol. 27: 3211-3216; 2007.
  • Lone, S.; Towson, S.A.; Uljon, S. N.; Johnson, R. E.; Brahma, A.; Nair, D. T.; Prakash, S.; Prakash, L.; Aggarwal, A. K. Human DNA polymerase-k encircles DNA:  implications for mismatch extension and lesion bypass.  Mol. Cell 25: 601-614; 2007.
  • Acharya, N.; Johnson, R. E.; Prakash, S.; Prakash, L. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase z for mismatch extension and for extension opposite from DNA lesions.  Mol. Cell. Biol. 26: 9555-9563; 2006.
  • Unk, I.; Hajdu, I.; Fatyol, K.; Szakal, B.; Blastyak, A.; Bermudez, V.; Hurwitz, J.; Prakash,, L.; Prakash, S.; Haracska, L. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl. Acad. Sci. 103: 18107-18112; 2006.
  • Johnson, R.E.; Prakash, L.; Prakash, S. Yeast of human translesion DNA synthesis polymerases: expression, purification and biochemical characterization. Methods in Enzymol. 408: 390-407; 2006.
  • Carlson, K. D.: Johnson, R. E.; Prakash, L.; Prakash, S.;  Washington, M. T. Human DNA polymerase k forms non-productive complexes with matched primer termini but not with mismatched primer termini. Proc. Natl. Acad. Sci. 103: 15776-15781; 2006.
  • Gangavarapu, V.; Haracska, L.; Unk, I.; Johnson, R.E.; Prakash, S.; Prakash, L. Mms2-Ubc13 dependent and independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae.  Mol. Cell Biol. 26: 7783-7790; 2006.
  • Johnson, R.E.; Haracska, L.; Prakash. L.; Prakash, S. Role of Hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase i.   Mol. Cell Biol. 26: 6435-6441; 2006.
  • Nair, D.T.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K.  Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase i.  Nature Struct. & Mol. Biol., 13:619-625; 2006.
  • Nair, D.T.; Johnson, R.E.; Prakash, L.; Prakash, S; Aggarwal, A.K.  An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-i active site.  Structure 14: 749-755; 2006.
  • Ribar, B.; Prakash, L.; Prakash, S.  Requirement of ELC1 for RNA polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae.  Mol. Cell. Biol. 26:3999-4005; 2006.
  • Haracska, L.; Unk, I.; Prakash, L.; Prakash, S.  Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis.  Proc. Natl. Acad. Sci. 103:6477-6482; 2006.
  • Guzder, S.N.; Somers, C.H.; Prakash, L.; Prakash, S. Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo.  Mol. Cell Biol. 26:1135-1141; 2006.
  • Wolfle, W.T.; Johnson, R.E.; Minko, I.G.; Lloyd, R.S.; Prakash, S.; Prakash, L.  Replication past a trans-4-hydroxynonenal minor groove adduct by the sequential action of human DNA polymerases iota and kappa.  Mol. Cell Biol. 26: 381-386; 2006.
  • Prakash, S.; Johnson, R.E.; Prakash, L.  Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74:317-353; 2005.
  • Haracska, L.; Johnson, R.E.; Prakash, L.; Prakash, S.  Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity.  Mol. Cell. Biol. 25: 10183-10189; 2005.
  • Acharya, N.; Haracska, L.; Johnson, R.E.; Unk, I.; Prakash, S.; Prakash, L.  Complex formation of yeast Rev1 and Rev7 proteins:  a novel role for the polymerase-associated domain.  Mol. Cell. Biol. 25: 9734-9740; 2005.
  • Aggarwal, A.; Nair, D.; Johnson, R.; Prakash, L.; Prakash, S.  Hoogsteen base-pairing in DNA replication.  Nature 437: E7; 2005.
  • Nair, D. T.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K.  Human DNA polymerase i incorporates dCTP opposite template G via a G.C+ Hoogsteen base pair.  Structure 13: 1569-1577; 2005.
  • Nair, D. T.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K.   Rev1 employs a novel mechanism of DNA synthesis using a protein template.  Science 309: 2219-2222; 2005.
  • Wolfle, W.T.; Johnson, R.E.; Minko, I.E.; Lloyd, R.S.; Prakash, S.; Prakash, L.  Human DNA polymerase i promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA.  Mol. Cell. Biol. 25:8748-8754; 2005.
  • Johnson, R.E.; Prakash, L.; Prakash, S.   Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase h.  Proc. Natl. Acad. Sci.  102:  12359-12364; 2005.
  • Johnson, R.E.; Prakash, L.; Prakash, S.   Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase i.  Proc. Natl. Acad. Sci. 102: 10466-10471; 2005.
  • Wolfle, W.T.; Washington, M.T.;  Kool, E.T.;  Spratt, T. E.; Helquist, S.A.; Prakash, L.;   Prakash, S.  Evidence for a Watson-Crick hydrogen bonding requirement in DNA synthesis by human DNA polymerase k. Mol. Cell. Biol. 25: 7137-7143; 2005.
  • Haracska, L.; Acharya, N.; Unk, I.; Johnson, R.E.; Hurwitz, J.; Prakash, L.; Prakash, S.  A single domain in human DNA polymerase i mediates interaction with PCNA: implications for translesion DNA synthesis.  Mol. Cell. Biol. 25:1183-1190; 2005.
  • zder, S.N.; Torres-Ramos, C.; Johnson, R.E.; Haracska, L.; Prakash, L.; Prakash, S. Requirement of yeast Rad1-Rad10 nuclease for the removal of 3’-blocked termini from DNA strand breaks induced by reactive oxygen species. Genes Dev. 18: 2283-2291; 2004.
  • jon, S.N.; Johnson, R.E.; Edwards, T.A.; Prakash, S.; Prakash, L.; Aggarwal, A.K.  Crystal structure of the catalytic core of human DNA polymerase kappa. Structure 12: 1395-1404; 2004.
  • Nair, D.T.; Johnson, R.E.; Prakash, S.; Prakash, L.; Aggarwal, A.K.  Replication by human DNA polymerase-i occurs by Hoogsteen base-pairing.  Nature 430: 377-380; 2004.
  • Washington, M.T.; Minko, I.G.; Johnson, R.E.;  Haracska, L.; Harris, T.M.; Lloyd, R.S.;  Prakash, S.; Prakash, L. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase z.  Mol. Cell. Biol. 24: 6900-6906; 2004.
  • Washington, M.T.; Minko, I.G.; Johnson, R.E.;  Wolfle, W.T.; Harris, T.M.; Lloyd, R.S.;  Prakash, S.; Prakash, L. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases i and k.  Mol. Cell. Biol. 24: 5687-5693; 2004.
  • Trincao, J.; Johnson, R.E.; Wolfle, W.T.; Escalante, C.R.; Prakash, S.; Prakash, L.; Aggarwal, A.K.  Dpo4 is hindered in extending a G·T mismatch by a reverse wobble.  Nature Struct. Mol. Biol. 11: 457-462; 2004.
  • Haracska, L.; Torres-Ramos, C.A.; Johnson, R.E.; Prakash, S.; Prakash, L.  Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae.  Mol. Cell. Biol. 24: 4267-4274; 2004.
  • Washington, M.T.; Johnson, R. E.; Prakash, L.; Prakash, S. Human DNA polymerase i utilizes different nucleotide incorporation mechanisms dependent upon the template base.  Mol. Cell. Biol. 24: 936-943; 2004.
  • Haracska, L.; Prakash, L.; Prakash, S.  A mechanism for the exclusion of low fidelity human Y-family DNA polymerases from base excision repair.  Genes & Dev., 17:2777-2785; 2003.
  • Washington, M.T.; Johnson, R.E.; Prakash, L.; Prakash, S.  Mechanism of nucleotide incorporation by human DNA polymerase h differs from that of the yeast enzyme.  Mol. Cell. Biol. 23:8316-8322; 2003.
  • Washington, M.T.; Prakash, L.; Prakash, S.  Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase h. Proc. Natl. Acad. Sci. 100:12093-12098; 2003.
  • Wolfle, W.T.; Washington, M.T.; Prakash, L.; Prakash, S.  Human DNA polymerase k uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. Genes & Dev. 17:2191-2199; 2003.
  • Washington, M.T.; Helquist, S.A.; Kool, E. T.;  Prakash, L.; Prakash, S. Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase h.  Mol. Cell. Biol. 23: 5107-5112; 2003.
  • Washington, M.T.; Wolfle, W.T.; Spratt, T.E.; Prakash, L.; Prakash, S.  Yeast DNA polymerase h makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate.  Proc. Natl. Acad. Sci. 100:5113-5118; 2003.
  • Johnson, R.E.; Trincao, J.; Aggarwal, A.K.; Prakash, S.; Prakash, L. Deoxynucleotide triphosphate binding mode conserved in Y family DNA polymerases. Mol. Cell. Biol. 23: 3008-3012; 2003.
  • Haracska, L.; Prakash, S.; Prakash, L. Yeast DNA polymerase z is an efficient extender of primer ends opposite from 7,8-dihydro-8-oxoguanine and O6-methylguanine.  Mol. Cell. Biol. 23:1453-1459; 2003.
  • Minko, I. G.; Washington, M.T.; Kanuri, M.; Prakash, L.; Prakash, S.; Lloyd, R. S. Translesion synthesis past acrolein-derived DNA adduct, g-hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase h. J. Biol. Chem. 278: 784-790; 2003.
  • Johnson, R.E.; Yu, S.-L.; Prakash, S.; Prakash, L. Yeast DNA polymerase zeta (z) is essential for error-free replication past thymine glycol. Genes & Dev. 17:77-87; 2003.
  • Yu, S.-L.; Lee, S.-K.; Johnson, R. E.; Prakash, L.; Prakash, S. The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell Biol. 23:382-388; 2003.
  • Haracska, L.; Prakash, L.; Prakash, S. Role of human DNA polymerase k as an extender in translesion synthesis. Proc. Natl. Acad. Sci.; 99:16000-16005; 2002.
  • Unk, I.; Haracska, L.; Gomes, X.V.; Burgers, P.M.J.; Prakash, L.; Prakash, S.  Stimulation of 3’®5’ exonuclease and 3’-phosphodiesterase activities of yeast Apn2 by proliferating cell nuclear antigen.  Mol. Cell Biol. 22:6460-6486; 2002.
  • Lee, S.-K.; Yu, S.-L.; Prakash, L.; Prakash, S. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: implications for Cockayne syndrome.  Cell 109:823-834; 2002.
  • Lee, S.-K., Yu, S.-L., Prakash, L.;  Prakash, S. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases.  Mol. Cell Biol. 22: 4383-4389; 2002.
  • Prakash, S.; Prakash, L.  Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair.  Genes & Dev. 16:1872-1883; 2002.
  • Haracska, L.; Prakash, S.; Prakash, L.  Yeast Rev1 protein is a G template-specific DNA polymerase.  J. Biol. Chem. 277:15546-15551; 2002.
  • Torres-Ramos, C.A.; Prakash, S.; Prakash, L.   Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.  Mol. Cell. Biol. 22: 2419-2426; 2002.
  • Washington, M.T.; Johnson, R.E.; Prakash, L.; Prakash, S. Human DINB1 encoded DNA polymerase k is a promiscuous extender of mispaired primer termini.  Proc. Natl. Acad. Sci.; 99:1910-1914; 2002.
  • Haracska, L.; Unk, I.; Johnson, R.E.;  Philips, B.B.; Hurwitz,J.;  Prakash, L.; Prakash, S. Stimulation of DNA synthesis activity of human DNA polymerase k by PCNA.  Mol. Cell. Biol.; 22: 784-791; 2002.
  • Washington, M.T., Prakash, L. Prakash, S. Yeast DNA polymerase hutilizes an induced-fit mechanism of nucleotide incorporation.  Cell; 107:917-927; 2001.
  • Haracska, L.; Johnson, R.E.; Unk, I.; Philips, B.B.;  Hurwitz, J.; Prakash, L.; Prakash, S. Targeting of human DNA polymerase i to the replication machinery via interaction with PCNA.  Proc. Natl. Acad. Sci.; 98:14256-14261; 2001.
  • Lee, S.-K.; Yu, S.-L; Prakash, L.; Prakash, S.  Requirement of yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II.  Mol. Cell. Biol. 21: 8651-8656; 2001.
  • Madril, A.C.; Johnson, R.E.; Washington, M.T.; Prakash, L.; Prakash, S. Fidelity and damage bypass ability of Schizosaccharomyces pombe  Eso1 protein, comprised of DNA polymerase h and sister chromatid cohesion protein Ctf7.  J. Biol. Chem. 276: 42857-42862; 2001.
  • Trincao, J., Johnson, R.E.;  Escalante, C.R.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Structure of the catalytic core of S. cerevisiae DNA polymerase h:  implications for translesion DNA synthesis.  Mol. Cell. 8: 417-426; 2001.
  • Haracska, L.; Johnson, R.E.; Unk, I.; Phillips, B.; Hurwitz, J.; Prakash, L.; Prakash, S. Physical and functional interactions of human DNA polymerase h with PCNA.  Mol. Cell. Biol. 21: 7199-7206; 2001.
  • Haracska, L.;  Kondratick, C.M.; Unk, I.; Prakash, S.; Prakash, L. Interaction with PCNA is essential for yeast DNA polymerase h function.  Mol. Cell. 8: 407-415; 2001.
  • Washington, M. T.; Johnson, R.E.; Prakash,  L.; Prakash, S. Accuracy of lesion bypass by yeast and human DNA polymerase h.  Proc. Natl. Acad. Sci. 98: 8355-8360; 2001.
  • Burgers, P.M.; Koonin, E.V.; Bruford, E.; Blanco, L.; Burtis, K.C.; Christman, M.F.; Copeland, W.C.; Friedberg, E.C.; Hanaoka, F.; Hinkle, D.C.; Lawrence, C.W.; Nakanishi, M.; Ohmori, H.; Prakash, L.; Prakash, S.; Claude-Agnes, R.; Sugino, A.; Todo, T.; Wang, Z.; Weill, J.-C.; Woodgate, R. Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature.  J. Biol. Chem. 276:43487-43490; 2001.
  • Ohmori, H., E. C. Friedberg, R. P. P. Fuchs, M. F. Goodman, F. Hanaoka, D. Hinkle, T. A. Kunkel, C.; Lawrence, W.; Livneh, Z.; Nohmi, T.; Prakash, L.; Prakash, S.; Todo, T.; Walker, G.C.; Wang, Z.; Woodgate, R.   The Y-family of DNA polymerases.   Mol. Cell 8:7-8; 2001.
  • Haracska, L.; Unk, I.; Johnson, R.E.; Johansson, E.; Burgers, P.M.J.; Prakash, S.;. Prakash, L. Roles of yeast DNA polymerases d and z and of Rev1 in the bypass of abasic sites.  Genes & Dev. 15: 945-954; 2001.
  • Johnson, R.E., Haracska, L.; Prakash, S.; Prakash, L. Role of DNA polymerase h in the bypass of a (6-4) TT photoproduct.  Mol. Cell. Biol. 21: 3558-3563; 2001.
  • Minko, I.G.; Washington, M.T.; Prakash, L.; Prakash, S.; Lloyd, R.S.; Translesion DNA synthesis by yeast DNA polymerase h on templates containing N2-guanine adducts of 1,3-butadiene metabolites. J. Biol. Chem. 276: 2517-2522; 2001.
  • Haracska, L.; Washington, M.T.; Prakash, S.; Prakash, L.  Inefficient bypass of an abasic site by DNA polymerase h. J. Biol. Chem. 276: 6861-6866; 2001.
  • Kondratick, C.M.; Washington, M.T.; Prakash, S.; Prakash, L. Acidic residues critical for the activity and biological function of yeast DNA polymerase h.  Mol. Cell. Biol. 21: 2018-2025; 2001.
  • Unk, I., Haracska, L.; Prakash, S.; Prakash, L.  3’-phosphodiesterase and 3’®5’ exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage.  Mol. Cell. Biol. 21: 1656-1661, 2001.
  • Washington, M.T.; Johnson, R.E.; Prakash, S.; Prakash, L. Mismatch extension ability of yeast and human DNA polymerase h.  J. Biol. Chem. 276: 2263-2266; 2001.
  • Yu, S.-L.; Johnson, R.E.; Prakash, S.; Prakash, L.  Requirement of DNA Polymerase h for Error-Free Bypass of UV-Induced CC and TC Photoproducts. Mol. Cell Biol. 21:185-188; 2001.
  • Prakash, S.; Johnson, R.E.; Washington, M.T.; Haracska, L.; Kondratick, C.M.; Prakash, L.  Role of Yeast and Human DNA Polymerase h in Error-free Replication of Damaged DNA.  Cold Spring Harbor Symposia on Quantitative Biology Volume LXV; 2000 Cold Spring Harbor Laboratory Press; 2001.
  • Replication past O6-methylguanine by yeast and human DNA polymerase h.  Mol. Cell. Biol. 20:8001-8007; 2000.
  • Johnson, R.E.; Washington, M.T.; Haracska, L.; Prakash, S.; Prakash, L.  Eukaryotic polymerases i and z act sequentially to bypass DNA lesions. Nature 406:1015-1019; 2000.
  • Haracska, L.; Yu, S.L.; Johnson, R.E.; Prakash, L.; Prakash, S.  Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase h.  Nature Genetics 25:458-461; 2000.
  • Prakash, S.; Prakash, L.  Nucleotide excision repair in yeast.  Mutat. Res. 451:13-24; 2000.
  • Unk, I.; Haracska, L.; Johnson, R.E.; Prakash, L.; Prakash, S. Apurinic endonuclease activity of yeast Apn2 protein.  J. Biol. Chem. 275:22427-22434; 2000.
  • Torres-Ramos, C.A.; Johnson, R.E.; Prakash, L.; Prakash, S.  Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast.  Mol. Cell Biol. 20:3522-3528; 2000.
  • Johnson, R.E.; Prakash, S.; Prakash, L.  The human DINB1 gene encodes the DNA polymerase Polq.  Proc. Natl. Acad. Sci. 97:3838-3843; 2000.
  • Johnson, R.E.; Washington, M.T.; Prakash, S.; Prakash; L.  Fidelity of human DNA polymerase h.  J. Biol. Chem. 275:7447-7450; 2000.
  • Washington, M.T.; Johnson, R.E.; Prakash, S.; Prakash, L. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase h.  Proc. Natl. Acad. Sci. 97:3094-3099; 1999.
  • Washington, M.T.; Johnson, R.E.; Prakash, S.; Prakash; L. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase h.  J. Biol. Chem. 274:36835-36838; 1999.
  • Lee, S.-K.; Johnson, R.E.; Yu, S.-L.; Prakash, L.; Prakash, S.  Requirement of yeast SGS1 and SRS2 genes for replication and transcription.  Science 286:2339-2342; 1999.
  • Johnson, R.E.; Washington, M.T.; Prakash, S.; Prakash, L.  Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA.  Proc. Natl. Acad. Sci. 96:12224-12226; 1999.
  • Johnson, R.E.; Washington, M.T.;  Prakash, S.;  Prakash, L.  Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA.  Proc. Natl. Acad. Sci. 96:12224-12226; 1999.
  • Guzder, S.N.; Sung, P.; Prakash, L.; Prakash, S.  Synergistic interaction between yeast nucleotide excision repair factors NEF2 and NEF4 in the binding of ultraviolet-damaged DNA.  J. Biol. Chem. 274:24257-24262; 1999.
  • Johnson, R.E.; Kondratick, C.M.; Prakash, S.; Prakash, L.    hRAD30 mutations in the variant form of xeroderma pigmentosum.  Science 285:263-265; 1999.
  • Johnson, R.E.; Prakash, S.; Prakash, L.  Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function.  J. Biol. Chem. 274:15975-15977; 1999.
  • Johnson, R.E.; Prakash, S.; Prakash, L.  Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, polh.  Science 283:1001-1004; 1999.
  • Guzder, S.N.; Sung, P.; Prakash, L.; Prakash, S.  Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA.  J. Biol. Chem. 273:31541-31546; 1998.
  • Johnson, R.E.; Torres-Ramos, C.A.; Izumi, T.; Mitra, S.; Prakash, S.; Prakash, L.   Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP-endonuclease HAP1, and its role in the repair of abasic sites.  Genes & Develop. 12:3137-3143; 1998.
  • Guzder, S. N.; Sung, P.; Prakash, L.; Prakash, S.  The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition.  J. Biol. Chem. 273: 6292-6296; 1998.
  • Johnson, R.E.; Kovvali, G.K.; Prakash, L.; Prakash, S.  Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication.  Curr. Genet. 34:21-29; 1998.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.   ATP dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes.  J. Biol. Chem., 273:9837-9841; 1998.
  • Newman, C.C.; Prakash, L.  Xeroderma pigmentosum.  Unit 19-7, In “Clinical Dermatology”, D. Joseph Demis (eds.), Lippincott-Raven Press, NY.  pp. 1-26; 1998.
  • Worthylake, D. K.; Prakash, S.; Prakash, L.; Hill, C. P.  Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 Å resolution.  J. Biol. Chem., 273:6271-6276; 1998.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex.  Curr. Biol., 7:790-793; 1997.
  • Huang, H.; Kahana, A.; Gottschling, D.E.; Prakash, L.; Liebman, S.W.  The ubiquitin-conjugating enzyme, Rad6/Ubc2, is required for silencing in yeast.  Mol. Cell Biol.. 17:6693-6699; 1997.
  • Torres-Ramos, C.A.; Prakash, S.; Prakash, L. Requirement of yeast DNA polymerase d in post-replicational repair of UV damaged DNA.  J. Biol. Chem. 272:25445-25448; 1997.
  • Guzder, S.N.; Sung, P.; Prakash, L.; Prakash, S. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor.  J. Biol. Chem. 272:21665-21668; 1997.
  • Bailly, V.; Lauder, S.; Prakash, S.; Prakash, L.  Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities.  J. Biol. Chem. 272:23360-23365; 1997.
  • Bailly, V.; Prakash, S.; Prakash, L.   Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein.  Mol. Cell Biol. 17:4536-4543; 1997.
  • Lauder, S.; Bankmann, M.; Guzder, S. N.; Sung, P.; Prakash, L.; Prakash, S.  Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription.  Mol. Cell Biol. 16:6783-6793; 1996.
  • Johnson, R.E.; Kovvali, G.K.;  Guzder, S.N.;  Amin, N.S.;  Holm, C.;  Habraken, Y.;  Sung, P.;  Prakash, L.;  Prakash, S.  Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair.  J. Biol. Chem. 271:27987-27990; 1996.
  • Habraken, Y.; Sung, P.; Prakash, S.; Prakash, L.  Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3:  Implications for nucleotide excision repair and Cockayne syndrome.  Proc. Natl. Acad. Sci. USA 93:10718-10722; 1996.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3.  Curr. Biol. 6:1185-1187; 1996.
  • Torres-Ramos, C.A.; Yoder, B.L.; Burgers, P.M.J.; Prakash, P.; Prakash, L.   Requirement of proliferating cell nuclear antigen in RAD6 -dependent postreplicational DNA repair.  Proc. Natl. Acad. Sci. USA  93:9676-9681; 1996.
  • Guzder, S.N.; Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  RAD26, the yeast homolog of human Cockayne’s syndrome group B gene, encodes a DNA dependent ATPase.  J. Biol. Chem. 271:18314-18317; 1996.
  • Burns, J.L.; Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.   An affinity of human replication protein A for ultraviolet-damaged DNA:  implications for damage recognition in nucleotide excision repair.  J. Biol. Chem.  271:11607-11610; 1996.
  • Sung, P.; Guzder, S.N.; Prakash, L.; Prakash S.  Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair.  J. Biol. Chem. 271:10821-10826; 1996.
  • Guzder, S.N.; Sung, P.; Prakash, L.; Prakash, S.  Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome.  J. Biol. Chem. 271:8903-8910; 1996.
  • Johnson, R.E.; Kovvali, G.K.; Prakash, L.; Prakash, S.  Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability.  J. Biol. Chem. 271:7285-7288; 1996.
  • Saparbaev, M.; Prakash, L.; Prakash, S. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae.  Genetics 142:727-736; 1996.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash; S.  Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J. Biol. Chem. 270:30194-30198; 1995.
  • Yan, Y.-X.; Schiestl, R.H.; Prakash, L.  Mating type suppression of the DNA repair defect of the yeast rad6D mutation requires the activity of genes in the RAD52  epistasis group.  Current Genet. 28:12-18; 1995.
  • Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.  Lethality in yeast of trichothiodystrophy (TTD) mutations in the human xeroderma pigmentosum group D gene.  J. Biol. Chem. 270:17660-17663; 1995.
  • Johnson, R.E.; Kovvali, G.K.; Prakash, L.; Prakash S.  Requirement of the yeast RTH1 5’ to 3’ exonuclease for the stability of simple repetitive DNA.  Science  269:238-240; 1995.
  • Guzder, S.N.; Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH.  J. Biol. Chem. 270:12973-12976; 1995.
  • Guzder, S.N.; Bailly, V.; Sung, P.; Prakash, L.; Prakash, S.  Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14.  J. Biol. Chem.  270: 8385-8388; 1995.
  • Sommers, C.H.; Miller, E.J.; Dujon, B.; Prakash, S.; Prakash, L.  Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5’ to 3’ exonuclease required for lagging strand DNA synthesis in reconstituted systems.  J. Biol. Chem. 270:4193-4196; 1995.
  • Prakash, L. The RAD6 gene and protein of Saccharomyces cerevisiae.  Annals New York Acad. Sciences. In  “DNA Damage: Effects on DNA Structure and Protein Recognition”  S. S. Wallace, B. Van Houten, and Y. Wah Kow (eds.), New York Acad. Sciences, NY,  pp. 267-273; 1994.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  A conserved 5’ to 3’ exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG.  J. Biol. Chem. 269:31342-31345; 1994.
  • Johnson, R.E.; Prakash, S.; Prakash, L. Yeast DNA repair protein Rad5 that promotes instability of simple repetitive sequences is a DNA dependent ATPase.  J. Biol. Chem. 269:28259-28262; 1994.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash S.  Holliday junction cleavage by yeast Rad1 protein.  Nature 371:531-534; 1994.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  Human xeroderma pigmentosum group G gene encodes a DNA endonuclease.  Nucl. Acids Res. 22:3312-3316; 1994.
  • Guzder, S.; Sung, P.; Bailly, V.; Prakash, L.; Prakash, S.  RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription.  Nature  369:578-581; 1994.
  • Bailly, V.; Lamb, J.; Sung, P.; Prakash, S.; Prakash, L.   Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes & Develop. 8:811-820; 1994.
  • Gözükara, M.; Parris, C.N.; Weber, C.A.; Salazar, E.P; Seidman, M.M.;  Watkins, J.F.;  Prakash, L.;  Kraemer, K.H.  The human DNA repair gene, ERCC2 (XPD), corrects ultraviolet hypersensitivity and ultraviolet hypermutability of a shuttle vector replicated in xeroderma pigmentosum group D cells.  Cancer Research 54:3837-3844; 1994.
  • Sung, P.; Watkins, J.F.; Prakash, L.; Prakash, S.  Negative superhelicity promotes ATP dependent binding of yeast RAD3 protein to ultraviolet damaged DNA.  J. Biol. Chem.  269:8303-8308; 1994.
  • Guzder, S.N.; Qiu, H.; Sommers, C.H.; Sung, P.; Prakash, L.; Prakash, S.  The Saccharomyces cerevisiae DNA repair gene RAD3 is essential for transcription by RNA polymerase II.  Nature  367:91-94; 1994.
  • Prasad, R.; Widen, S.G.; Singhal, R.K.; Watkins, J.; Prakash, L.; Wilson, S.H.  Yeast open reading frame YCR14C encodes a DNA b-polymerase-like enzyme.  Nucl. Acids Res., 21:5301-5307; 1993.
  • Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S.  Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease.  Nature. 366:365-368; 1993.
  • Prakash, S.; Sung, P.; Prakash, L.  DNA repair genes and proteins of Saccharomyces cerevisiae.  Ann. Rev. Genet. 27: 33-70; 1993.
  • Watkins, J.F.; Sung, P.; Prakash, L.; Prakash, S.  The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function.  Mol. and Cell. Biol., 13:7757-7765; 1993.
  • Qiu, H.; Park, E.; Prakash, L.; Prakash, S.  The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II.  Genes & Develop. 7:2161-2171; 1993.
  • Sung, P.; Bailly, V.; Weber, C.; Thompson, L.H.; Prakash, L.; Prakash, S.   Human xeroderma pigmentosum group D gene encodes a DNA helicase.  Nature. 365:852-855; 1993.
  • Sung, P.; Reynolds, P.; Prakash, L.; Prakash, S.   Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease.  J. Biol. Chem., 268:26391-26399; 1993.
  • Guzder, S. N.; Sung, P.; Prakash, L.; Prakash S.  Yeast DNA repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet damaged DNA.  Proc. Natl. Acad. Sci. USA 90:5433-5437; 1993.
  • Watkins, J.F.; Sung, P.; Prakash, S.; Prakash, L.  The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation.  Genes and Develop. 7:250-261; 1993.
  • Prakash, S.; Prakash, L. DNA repair genes and proteins of yeast and human.  Proceedings of the 11th International Congress on Photobiology, Kyoto.  Elsevier Sciences Publishers, Amsterdam, pp. 239-244; 1992
  • Prakash, S.; Prakash, L. Conservation of structure and function of DNA repair genes between yeast and human.  Radiation Research. A twentieth-century perspective.  Vol. 2. Congress Proceedings, pp. 239-244; 1992.
  • Prakash, L.; Johnson, R.; Sung, P. Prakash, S.  Genes and proteins of Saccharomyces cerevisiae that function in postreplication repair.  Alfred Benzon Symposium 35: DNA Repair Mechanisms.  Munksgaard, International Publishers Ltd. pp. 374-381; 1992.
  • Prakash, S.; Sung, P.; Bailly, V.; Guzder, S.N.; Park, E.; Sommers, C.H.; Prakash L.  Excision repair genes and proteins of Saccharomyces cerevisiae.  Alfred Benzon Symposium 35: DNA Repair Mechanisms.  Munksgaard, International Publishers Ltd. 384-390; 1992.
  • Park, E.; Guzder, S.N.; Koken, M.H.M.; Jaspers-Dekker, I.;  Weeda, G.;  Hoiejmakers, J. H. J.;  Prakash, S.; Prakash, L.  RAD25 (SSL2), the yeast homolog of human xeroderma pigmentosum group B DNA repair gene, is essential for viability.  Proc. Natl. Acad. Sci. USA  89:11416-11420; 1992.
  • Bailly, V.; Sommers, C.H.; Sung, P.; Prakash, L.; Prakash, S.  Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10.  Proc. Natl. Acad. Sci. USA 89:8273-8277; 1992.
  • Johnson, R.E.; Henderson, S.T.; Petes, T.D.; Prakash, S.; Bankmann, M.; Prakash, L.  RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs, and affects the stability of simple repetitive sequences in the genome.  Mol. Cell. Biol. 12:3807-3818; 1992.
  • Reynolds, P.R.; Biggar, S.; Prakash, L.; Prakash, S.  The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae.  Nucl. Acids Res. 20:2327-2334; 1992.
  • Sung, P.; Prakash, L.; Prakash, S.  Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD10. Nature 355:743-745; 1992.
  • Bankmann, M.; Prakash, L.; Prakash, S.  Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins.  Nature 355:555-558; 1992.
  • Bailly, V.; Sung, P.; Prakash, L.; Prakash, S. DNA-RNA helicase activity of RAD3 protein of  Saccharomyces cerevisiae.  Proc. Natl. Acad. Sci. USA 88:9712-9716; 1991.
  • Koken, M.H.M.; Reynolds, P.; Jaspers-Dekker, I.;  Prakash, L.;  Prakash, S.; Bootsma, D.;  Hoiejmakers, J.H.J.  Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6.  Proc. Natl. Acad. Sci. USA 88:8865-8869; 1991.
  • Sung, P.; Prakash, S.; Prakash, L.  A stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity.  J. Molec. Biol. 221:745-749; 1991.
  • Sung, P.; Berleth, E.; Pickart, C.; Prakash, S.; Prakash, L.  Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme.  EMBO J. 10:2187-2193; 1991.
  • Koken, M.; Reynolds, P.; Bootsma, D.; Hoeijmakers, H.; Prakash, S.; Prakash, L.     Dhr6, a Drosophila homolog of the yeast DNA repair gene RAD6.  Proc. Natl. Acad. Sci. USA. 88:3832-3836; 1991.
  • Prakash, S.; Sung, P.; Prakash, L.  Structure and function of DNA repair genes of Saccharomyces cerevisiae.  In “The Eukaryotic Nucleus:  Molecular Structure and Macromolecular Assemblies”, P. Strauss and S. Wilson (eds.), The Telford Press, Caldwell, NJ. pp. 275-292; 1990.
  • Jones, J.S.; Prakash, L.  Transcript levels of the Saccharomyces cerevisiae DNA repair  gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle.  Nucl. Acids Res. 19:893-898; 1990.
  • Jones, J.; Prakash, L.  Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers.  Yeast 6:363-366; 1990.
  • Reynolds, P.; Koken, M.H.M.; Hoeijmakers, J.H.H.;  Prakash, S.;  Prakash, L.  The rhp6+ gene of Schizosaccharomyces pombe: a structure and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J. 9:1423-1430; 1990.
  • Jones, J.S.; Prakash, L.; Prakash S. Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation.  Nucl. Acids Res. 18:3281-8285; 1990.
  • Schiestl, R.H.; Prakash, S.; Prakash L. The SRS2 suppressor of rad6 mutations of  Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway.  Genetics 124:817-831; 1990.
  • Sung, P.; Prakash, S.; Prakash L.  Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin conjugating activity and its various biological functions. Proc. Natl. Acad. Sci. USA  87:2695-2699; 1990.
  • Prakash, L. The structure and function of RAD6 and RAD18 DNA repair genes of Saccharomyces cerevisiae. Genome 31:597-600; 1989.
  • Prakash, L.; Prakash, S. Excision repair genes of Saccharomyces cerevisiae. Ann. Ist. Super. Sanità. 25: 99-114; 1989.
  • Madura, K.; Prakash, S.; Prakash, L. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle.  Nucl. Acids Res. 18:771-778; 1990.
  • van Duin, M.; van den Tol, J.; Hoeijmakers, J.H.J.; Bootsma, D.;  Rupp, I. P.;  Reynolds, P.;  Prakash, L.;  Prakash, S.  Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol. Cell. Biol. 9:1794-1798; 1989.
  • Schiestl, R.H.; Reynolds, P.; Prakash, S.; Prakash, L. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.  Mol. Cell. Biol. 9:1882-1896; 1989.
  • Prakash, L.; Morrison, A. The RAD6 gene and protein of Saccharomyces cerevisiae.   In “Mechanisms and Consequences of DNA Damage Processing”,  E. C. Friedberg and P. C. Hanawalt (eds.), UCLA Symposia on Molecular and Cellular Biology, New Series. Volume 83, Alan R. Liss, Inc., NY, pp. 237-243; 1988.
  • Sung, P.; Higgins, D.; Prakash, L.; Prakash, S.   Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 7:3263-3269; 1988.
  • Sung, P.; Prakash, S.; Prakash, L.The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity.  Genes and Develop. 2:1476-1485; 1988.
  • Jones, J.S.; Weber, S.; Prakash, L. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucl. Acids Res. 16:7119-7131; 1988.
  • Morrison, A.; Miller, E.J.; Prakash, L.  Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae.  Mol. Cell. Biol. 8:1179-1185; 1988.
  • Sung, P.; Prakash, L.; Matson, S.W.; Prakash, S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase.  Proc. Natl. Acad. Sci. USA 84:8951-8955; 1987.
  • Sung, P.; Prakash, L.; Weber, S.; Prakash, S  The RAD3 gene of Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc. Natl. Acad. Sci. USA 84: 6045-6049; 1987.
  • Reynolds, P.; Prakash, L.; Prakash, S.  Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae.  Mol. Cell. Biol. 7:1012-1020; 1987.
  • Polakowska, R.; Perozzi, G.; Prakash, L.  Alkylation mutagenesis in Saccharomyces cerevisiae: lack of evidence for an adaptive response.  Curr. Genet. 10:647-656; 1986.
  • Reynolds, P.; Prakash, L.; Dumais, D.; Perozzi, G.; Prakash, S.  Nucleotide sequence of the RAD10 gene of Saccharomyces cerevisiae.  EMBO J. 4:3549-3552; 1985.
  • Reynolds, P.; Higgins, D.R.; Prakash, L.; Prakash, L. The nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucl. Acids Res. 7:2357-2372; 1985.
  • Reynolds, P.; Weber, S.; Prakash, L.  RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc. Natl. Acad. Sci. USA 82:168-172; 1985.
  • Peterson, T.A.; Prakash, L.; Prakash, S.; Osley, M.A.; Reed, S.I. Regulation of CDC9,  the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol. 5:226-235; 1985.
  • Prakash, L.; Dumais, D.; Polakowska, R.; Perozzi, G.; Prakash, S.  Molecular cloning of the RAD10 gene of Saccharomyces cerevisiae. Gene 34:55-61; 1985.
  • Higgins, D.R., Prakash, L.; Reynolds, P.; Prakash, S. Isolation and characterization of the RAD2 gene of Saccharomyces cerevisiae.  Gene 30:121-128; 1984.
  • Miller, R.D.; Prakash, S.; Prakash, L. Different effects of rad genes of Saccharomyces cerevisiae on incisions of interstrand crosslinks and monoadducts in DNA induced by psoralen plus near UV light treatment. Photochem. Photobiol. 39:349-352; 1984.
  • Higgins, D. R.; Prakash, S.; Reynolds, P.; Prakash, L.  Molecular cloning and characterization of the RAD1 gene of Saccharomyces cerevisiae.  Gene 26:119-126; 1983.
  • Higgins, D.R.; Prakash, S.;  Reynolds, P.; Polakowska, R.; Weber, S.;  Prakash, L. Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3  deletion mutants. Proc. Natl. Acad. Sci. USA 80:5680-5684; 1983.
  • Polakowska, R.; Prakash, L.; Prakash, S. Ultraviolet induced mutagenesis of mitochondrial genes in rad6, rev3, and cdc8 mutants of Saccharomyces cerevisiae.  Mol. Gen. Genet. 189:513-515; 1983.
  • Prakash, L.; Polakowska, R.; Slitzky, B. Cloning of a DNA repair gene in yeast.  Recent Adv. Yeast Mol. Biol. 1:225-241; 1982.
  • Miller, R.D.; Prakash, L.; Prakash, S.  Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae.  Mol. Gen. Genet. 188: 235-239; 1982.
  • Miller, R.D.; Prakash, L.; Prakash, S.  Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol. Cell. Biol. 2:939-948; 1982.
  • Prakash, L.; Higgins, D. Role of DNA repair in ethyl methanesulfonate induced mutagenesis in Saccharomyces cerevisiae.  Carcinogenesis 3:439-444; 1982.
  • Montelone, B.A.; Prakash, S.; Prakash, L. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: Evidence for multiple functions of the RAD6 gene.  Mol. Gen. Genet. 184:410-415; 1981.
  • Montelone, B.A.; Prakash, S.; Prakash, L. Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Current Genet. 4:223-232; 1981.
  • Prakash, L. Characterization of postreplication repair in the yeast, Saccharomyces cerevisiae and effects of the rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet. 184:471-478; 1981.
  • Prakash, L.; Polakowska, R.;  Reynolds, P.; Weber, S.  Molecular cloning and preliminary characterization of the RAD6 gene of the yeast, Saccharomyces cerevisiae.  In “Cellular Responses to DNA Damage,” UCLA Symposia on Molecular and Cellular Biology, New  Series, Volume XI,  E.C. Friedberg and B.A. Bridges (eds.), Alan R. Liss, Inc., New York, NY. pp. 559-568; 1983.
  • Crosby, W.; Davis, H.;  Prakash, L.; Hinkle, D.  Purification and properties of a uracil-DNA glycosylase from Saccharomyces cerevisiae.  Nucl. Acids Res. 9:5797-5809; 1981.
  • Wilcox, D.R.; Prakash, L.  Incision and postincision steps of pyrimidine dimer removal in excision defective mutants of Saccharomyces cerevisiae.  J. Bacteriol. 148:618-623; 1981.
  • Montelone, B.A.; Prakash, S.; Prakash, L.  Spontaneous mitotic recombination in mms8-1, an allele of the CDC9 gene of Saccharomyces cerevisiae.  J. Bacteriol. 147:517-525; 1981.
  • Prakash, L.; Taillon-Miller, P.  Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae.  Current Genet. 3:247-250; 1981.
  • Martin, P.; Prakash, L.; Prakash, S.   a/a specific effect of the mm3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae.   J. Bacteriol. 146:684-691;1981.
  • Prakash, L.; Prakash, S. Genetic analysis of error prone repair systems in Saccharomyces cerevisiae.   In “DNA Repair and Mutagenesis in Eucaryotes”.  W. M. Generoso, M. D. Shelby and F. J. de Serres (eds.) Plenum Press, NY, pp. 141-158; 1980.
  • Prakash, S.; Prakash, L.; Burke, W.;  Montelone, B.A.  Effects of the RAD52 gene on recombination in Saccharomyces cerevisiae.   Genetics 94:31-50; 1980.
  • Prakash, L.; Hinkle, D.; Prakash, S.  Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae.  Mol. Gen. Genet. 172: 249-258;1979.
  • Prakash, L.; Prakash, S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae:  RAD7, RAD14  and MMS19.  Mol. Gen. Genet. 176:351-359; 1979.
  • Prakash, L.; Prakash, S.  Pathways of DNA repair in yeast. In “DNA Repair Mechanisms”,  P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (eds.) Academic Press, NY, pp. 413-416; 1978.
  • Prakash, L.   Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae.   Mut. Res. 45:13-20; 1977.
  • Prakash, L.  Defective thymine dimer excision in radiation-sensitive mutants rad10  and rad16 of Saccharomyces cerevisiae.   Mol. Gen.Genet. 152:125-128; 1977.
  • Prakash, S.; Prakash. L. Increased spontaneous mitotic segregation in methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae.  Genetics 87:229-236; 1977.
  • Prakash, L.; Prakash, S.  Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86:33-55; 1977.
  • Prakash, L.  The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces cerevisiae. Mut. Res. 41:241-248; 1976.
  • Prakash, L. Effects of genes controlling radiation sensitivity on chemically-induced mutations in Saccharomyces cerevisiae. Genetics 83:285-301; 1976.
  • Prakash, L. The effect of genes controlling radiation sensitivity on chemical mutagenesis in yeast.  Molecular Mechanisms for Repair of DNA.  Part A, P.  C. Hanawalt and R. B. Setlow (eds.), pp. 393-395; 1975.
  • Prakash, L.  Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast  irradiated with low doses of ultraviolet light. J. Mol. Biol. 98:781-795; 1975.
  • Prakash, L.  Lack of chemically induced mutation in repair-deficient mutants of yeast.  Genetics 78:1101-1118; 1974.
  • Prakash, L.; Sherman, F. Differentiation between amber and ochre mutants of yeast by reversion with 4-nitroquinoline-oxide. Genetics 77:245-254; 1974.
  • Prakash, L.; Stewart, J.W.; Sherman; F.  Specific induction of transitions and transversions of G:C base pairs by 4-nitroquinoline-1-oxide in iso-1-cytochrome c mutants of yeast. J. Mol. Biol. 85:51-65; 1974.
  • Prakash, L.; Sherman, F.  Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast. J. Mol. Biol. 79:65-82; 1973.
  • Strauss, B.; Coyle, M.; Hill, T.; Myers, T.; Prakash, L.  The repair of alkylating agent induced breaks in the DNA of bacterial and mammalian cells.  Symp. on Genetics of Industrial Microorganisms.  Z. Vanek, A. Hostalek, and J. Culdin (eds.), Academia, Prague, pp. 87-117; 1973.
  • Hill, T.; Prakash, L.; Strauss, B. Mutagen stability of alkylation-sensitive mutants of Bacillus subtilis.  J. Bacteriol. 110:47-55; 1972.
  • Prakash, L.; Strauss, B.  Repair of alkylation damage: stability of methyl groups in Bacillus subtilis treated with methyl methanesulfonate. J. Bacteriol. 102:760-766; 1970.
  • Datta, P.; Prakash, L. Aspartokinase of Rhodopseudomonas spheroides.  Regulation of enzyme activity by aspartate b-semialdehyde. J. Biol. Chem. 241:5827-5835; 1966.
  • Burlant, L. (maiden name of L. Prakash), Datta, P.; Gest, H.   Control of enzyme activity in growing bacterial cells by concerted feedback inhibition. Science 148:1351-1353; 1965.